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a b s t r a c t

In this article, overlapping generations are extracting a natural
resource over an infinite future. We examine the fair allocation
of resource and compensations among generations. Fairness is
defined by core lower bounds and aspiration upper bounds. The
core lower bounds require that every coalition of generations
obtains at least what it could achieve by itself. The aspiration
upper bounds require that no coalition of generations enjoys a
higher welfare than it would achieve if nobody else extracted the
resource.We show that, upon existence, the allocation that satisfies
the two fairness criteria is unique and assigns to each generation
its marginal contribution to the preceding generation. Finally, we
describe the dynamics of such an allocation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Sustainable development is defined by the Brundtland Report as ‘‘development that meets the
needs of the presentwithout compromising the ability of future generations tomeet their ownneeds’’.
In an economy with natural resources, this definition of sustainable development may require that
present generations abstain fromextracting any resources. Indeed, as long as a resource is scarce in the
precise sense that every generation cannotmeet its own resource needs, meeting the needs of present
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generations would compromise the ability of future generations to meet their own needs. Therefore,
natural resource scarcity implies that sustainable development as defined above is impossible.
Oneway to reconcile the above definition of sustainable developmentwith scarce natural resource

is to consider the welfare equivalent of resource needs. Indeed, meeting future generation’s needs
requires that the present generations reduce their extraction and, therefore, consume less than their
needs, which in turn reduces their welfare. Yet, they might enjoy as much welfare as if they were
to consume the amount necessary to meet their needs if future generations transfer part of their
welfare derived from resource extraction. The welfare of present generations who do not extract too
much of a resource is then preserved through compensations from future generations. However, the
compensationmade by future generations to the present ones should not be too high, since otherwise,
it would compromise their own welfare.
We examine fair paths of extraction and compensations in a natural resource economy by

considering two fairness criteria. The first criterion is the so-called core lower bound. It requires that
thewelfare of any generation or group of generations be not lower thanwhat it could achieve by itself.
The theoretical background of this criterion is a fictitious negotiation in which all generations are able
to meet, agree on an extraction path and carry out compensations among themselves. We impose the
condition that any generation or coalition of generations should obtain at least what it would get as a
result of this negotiation.
The second fairness criterion hinges on a solidarity principle and is named the aspiration upper

bound. It requires that no generation or group of generations enjoys a welfare higher than its
aspirationwelfare, i.e. thewelfare it would achieve if no other generationwere to extract the resource.
The scarcity of the resource is important here since, by definition, not all generations can achieve their
aspiration welfare. The aspiration upper bound thus features some intergenerational solidarity.
We show that, upon existence, a unique extraction path and vector of compensations satisfy the

two fairness criteria. Each generation is assigned a welfare that is equal to its marginal contribution
to the preceding generation. We also describe the dynamics of the fair extraction path and the
compensations. Notably, compensations are shown to increase over time for at least the first
generations, which brings into question their feasibility: some generations might not be able to
produce enough goods from the resource stock to pay previous generations back. As a consequence,
fair allocation might not exist. We provide examples where it does exist and others where it does
not. Finally, we show that if there is no technical progress on resource productivity, the welfare of
generations decreases over time.
Our article combines two streams of literature that deal with themanagement of natural resources

in a normative way. On one hand, axiomatic theory of justice has recently been applied by Bossert
et al. (2007), Roemer and Suzumura (2007) and Asheim (2007) in order to compare welfare among
generations. On the other hand, dynamic programming methods have been used to solve the social
planner’s problem, featuring a representative infinitely lived individual maximizing the sum of a
discounted flow of utilities. Pioneer works have been proposed by Dasgupta and Heal (1974) and
Solow (1974) for exhaustible resources and these have been extended in many directions. Among
them, most notably, is the use of the vintage structure of the population by Marini and Scaramozzino
(1995). By combining these two approaches, our fairness axioms thus depend not only on preferences
but also on technological constraints and on the resource dynamics. From these axioms, we are then
in a position to analyze the fairness properties of extraction paths and intergenerational sharing of
welfare.
It should be noted that, in the literature, most of the axioms defining intergenerational fairness

treat generations symmetrically. They consider generations behind a ‘‘veil of ignorance’’ with regard
to their position on the time scale, which implies that earlier generations should not be favored
over later generations and vice versa. Here, in contrast, the two fairness principles treat generations
asymmetrically and acknowledge the priority access of the earlier generations to the natural resource.
We believe that the sequence of extraction and the dynamics of the resource are two important
features of the problem. They characterize the rights and duties of generations in the intergenerational
sharing of a natural resource. Concerning the rights, the laissez-faire extraction outcome defines
legitimate rights on the resource which, when translated into welfare, lead to the core lower bounds.
These rights are de facto resource endowments in an intergenerational exchange economy. By
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agreeing to reduce their resource extraction when young in exchange for a compensation when old, a
generation trades part of its resource endowment against consumption. The core lower bounds restrict
the allocation of a resource and consumption within the core of this particular exchange economy. In
the tradition of the general equilibrium theory, being in the core can be viewed as an attractive fairness
principle: a coalition of generations would object to an allocation that is not in the core by arguing
that it can achieve a higher welfare by sharing its own endowment among its members. The duties
of present generations toward future ones is defined by the solidarity principle. By upper bounding
welfare, earlier generations are forbidden from taking advantage of their priority on the resource by
getting too much welfare from the trading with future generations.1 In a nutshell, the core lower
bounds favor earlier generations while the aspiration upper bounds protect later ones.
The article proceeds as follows: Section 2 introduces the model, while Sections 3 and 4 define the

fairness principles. In Section 5, we characterize the fair allocation of resources and compensations.
We describe its dynamics and discuss its existence in Section 6. Conclusions are given in Section 7.

2. Model

A natural resource is exploited by successive overlapping generations indexed by their birth date
t ∈ N+. Let k0 be the initial stock of resource and ρ its regeneration rate with ρ ≥ 1 (the case ρ = 1
corresponds to an exhaustible resource). Let xt denote the amount of the resource extracted at date t .
The dynamics of the resource stock is given by the following law of motion:

kt+1 = ρ(kt − xt). (1)

Each generation t lives through two periods, youth and old age. It exploits the resource when
young as an input to produce consumption units through a production function ft . We assume that
ft is strictly concave and increasing up to a maximal production level ft

(
x̂t
)
and then decreasing.

Formally f ′t (xt) > 0 for all xt < x̂t , f ′t (x̂t) = 0, f
′
t (xt) < 0 for all xt > x̂t , and f ′′t (xt) < 0.2 The

extraction level x̂t is called generation t ’s optimal extraction. We also assume that ft(0) = 0 and
f ′t (0) = +∞ for all t . Coexisting generationsmight perform transfers among themselves. A generation
t might share its production when young with old people from the preceding generation. Let mt
denote the consumption units transferred by the generation t when young to the generation t − 1
when old. Thus, generation t consumes ft(xt) − mt when young and mt+1 when old. Without loss of
generalitym0, which denotes the first transfer made by the generation 0 to the generation born in−1
is normalized to zero, since thewelfare of generation−1 is not consideredhere. Letγt be the individual
discount rate, i.e. the value in terms of the intertemporal utility at time t of a marginal increase in the
instantaneous utility at time t + 1. We assume that 0 < γt < 1. Generation t ’s consumption from
resource exploitation, hereafter referred to as ‘‘utility’’, viewed at date t with xt units extracted and
transfersmt andmt+1, is:

ut = ft(xt)−mt + γtmt+1. (2)

We assume that the resource is scarce in the sense that all generations cannot extract enough tomeet
their demands x̂t . More precisely, there exists t̃ ∈ N++ such that if all generations t < t̃ extract x̂t , the
resource available for generation t̃ is strictly lower than generation t̃ ’s optimal extraction x̂t̃ . Formally,
∃t̃ such that ρ t̃k0 −

∑t̃−1
t=0 ρ

t̃−t x̂t < x̂t̃ .
In this set-up with a scarce resource and transferable utility, the selfish outcome under autarky is

inefficient (Pareto-dominated) as the following argument shows. Under autarky, it is optimal for each

1 They might easily end up with more than their aspiration welfare when trading the resource against consumption in
competitivemarkets. In a resource-sharing problem (with an exhaustible resource and a finite number of agents)with a concave
and single peak preference similar to that of the present article, Ambec (2008) shows that the Walrasian allocation with equal
division of the resource violates the aspiration upper bounds.
2 Negative returns above x̂t can be due to production costs that exceed the benefits from resource extraction, e.g. bottleneck
effects on complementary inputs (e.g. labor or capital) that render the resource unproductive but nonetheless costly to extract.
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generation t to extract the resource up to x̂t . They, therefore, enjoy ft(x̂t) consumption units or utility
at time t . Generation t̃ extracts the remaining resource ρ t̃k0 −

∑t̃−1
t=0 ρ

t̃−t x̂t , thereby exhausting the
resource and leaving nothing for future generations,who therefore obtain ft(0) for all t > t̃ . Given that
ft is concave with f ′t (0) = +∞, total production from resource extraction up to a date later than t̃ can
be increased if at least one generation l before t̃ reduces its extraction to leave some of the resource
for future generations after t̃ . The increased production can be shared among generations through
transfersmt so that every generation becomes better off at leastweakly, and strongly for someof them.
We examine coordinated extractions and transfers among generations. Generations agree on an

allocation {xt ,mt}t=0,...,+∞ that assigns resource extraction levels and intergenerational transfers for
every generation t . The allocation {xt ,mt} must satisfy the following feasibility conditions for all
t ∈ N+:

0 ≤ xt ≤ kt , (3)
0 ≤ mt ≤ ft(xt). (4)

The first feasibility condition (3) ensures that the (non-negative) amount of resource extracted does
not exceed the stock available at date t . The second feasibility condition (4) ensures that the (non-
negative) transfer to the old of the previous generation is lower than the consumption goods produced
at date t .

3. Core lower bounds

Our first fairness criterion refers to a fictitious cooperative game. Suppose that all generations can
meet to agree on an allocation. A core allocation of the fictitious cooperative game is such that any
coalition of generations obtains at least what it could obtain on its own, i.e. by coordinating extraction
and carrying out transfers among itsmembers. It satisfies the core lower bound, defined as the highest
welfare that a coalition can achieve on its own, for any arbitrary coalition.
In the fictitious cooperative game, generations can share the benefit from resource extraction

without constraints: transfers can be carried out among generations that are not contemporaneous
in reality. More importantly, non-contemporaneous generations might benefit from coordinated
extraction and share this benefit through transfers. In cooperative game theory terms, non-
consecutive coalitions can create value. Of course, in the fictitious cooperative game, the sequence
of extraction remains fixed: generations cannot exchange the timing of their extraction.
A coalition of generations is a non-empty subset ofN+. Given two coalitions S and T , wewrite S < T

if i < j for all i ∈ S and all j ∈ T . Given a coalition S, the first and the last generation in S are denoted
by min S and max S, respectively. Let Pi = {1, . . . , i} denote the set of predecessors of generation i,
and P0i = Pi \ {i} the set of strict predecessors of generation i. Similarly, let Fi = {i, i + 1, . . . , n}
denote the set of followers of generation i, and F 0i = Fi \ {i} the set of strict followers of generation i.
We often omit set brackets for sets and write i instead of {i}, or v(i, j) instead of v({i, j}). A coalition S
is consecutive (or connected) if for all i, j ∈ S and all k ∈ N , i < k < j implies k ∈ S.
We need to define the highest welfare that a coalition can achieve on its own in the fictitious

cooperative game. This is a cooperative game with externalities: the welfare of a coalition S depends
on extraction strategy by generations outside of S through the stock of resource available to S.
We assume that the outsiders behave non-cooperatively by extracting the resource under autarky.
Consider a coalition S. Without loss of generality, let us assign a weight θt to agent t ∈ S. The welfare
of S is

∑
t∈S θtut . Itmeans that 1 unit of utility transferred by generation t to generation t+j is valuated

at θt+j/θt units. The value of θt is obviously an important issue and, in the rest of this article, we assume
that relativeweights equal the generation’s discount factor, i.e. θt/θt−1 = γt−1. Let us now explain our
choice. First, replace the utility of each generation belonging to the coalition in the welfare function
to obtain:∑

t∈S

θt [ft (xt)−mt + γtmt+1] . (5)
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If the coalition embodies consecutive generations, S = {min S, . . . ,max S}, Eq. (5) can be rewritten
(up to a constant) as follows:∑

t∈S

θt

θmin S
ft (xt)−mmin S +

∑
t∈S

θt

θmin S

[
γt −

θt+1

θt

]
mt+1 +

θmax S

θmin S
γmax Smmax S+1. (6)

Hence, it is onlywhen θt/θt−1 = γt−1 that a transfer involving two coexisting generations (i.e. a young
individual born at time t and an old one born at time t − 1) is neutral for welfare. If θt/θt−1 > γt−1,
a transfer from a young individual to an old one has a negative impact on welfare. Transfers are thus
likely to be set to zero. Similarly, if θt/θt−1 < γt−1, the transfer increases the coalition’s welfare. It
should then bemaximal. When the generations within the coalition are not consecutive, the situation
is even worse, since the condition θt/θt−1 = γt−1 is the only way to make the intergenerational
transfer neutral for those who do not belong to the coalition. We thus argue that the welfare of a
coalition should discount the utility (or consumption) of future generations, because each individual
discounts time in his or her own utility function. For utility (or consumption) to be transferable
without efficiency gain or loss, we need to discount it when we compute the welfare of a coalition.3
Under this assumption of neutral transfers, the welfare of coalition S as defined in (5) becomes:

∑
t∈S

t∏
i=1

γi−1ft (xt) . (7)

For expositional convenience and without loss of generality, we assume from now on that all
generations discount utility at the same rate, γt = γ , which simplifies coalition S’s welfare as defined
in (7) to

∑
t∈S γ

t ft (xt).4
Let v(S) be the value function that assigns the highest welfare to any arbitrary coalition S. Consider

a coalition of consecutive generations S = {min S, . . . ,max S}. Thewelfare that S can achieve depends
on the stock of resource available for the first generation min S. We consider the worst possible
credible5 scenario for S, one in which generations preceding the coalition have extracted up to their
their optimal level x̂whenever possible. Therefore, the stock of resource, denoted kncSmin S , available for
the first generation min S of a coalition S is:

kncSmin S ≡ min

{
ρmin Sk0 −

min S−1∑
t=0

ρmin S−t x̂t , 0

}
.

Let xS = (xi)i∈S be the resource allocation assigned to members of S. The welfare v(S) valued at date
0 that the consecutive coalition S can achieve on its own is:

v(S) = max
xS

∑
t∈S

γ t ft(xt),

s.t.

∣∣∣∣∣∣
kt+1 = ρ (kt − xt) ,
kt ≥ xt ≥ 0, kt ≥ 0,
kmin S = kncSmin S .

(8)

The constraints on themaximization program are the resource dynamics, the feasibility and the initial
resource stock conditions, respectively. In particular, for singletons S = {i}, we have

v(i) = fi(min{x̂i, kncii }).

3 A consistent explanation for both individual and social discounting relies on the possibility, at each period of time, of the
end of the world (Dasgupta and Heal, 1974, 1979). The discount rate is then the world’s survival probability and, provided
that the utility is zero in the case of a collapse, objectives (2) and (5) can be seen as expected utility functions. Equalizing the
individual and coalition discount rates would, in this case, be reasonable.
4 This assumption is not needed for the proof of Proposition 1, which therefore holds for heterogenous discount rates.
5 Extracting more than x̂t is not credible for a generation t , since it reduces production and therefore utility.

Please cite this article in press as: d’Albis, H., Ambec, S., Fair intergenerational sharing of a natural resource. Mathematical
Social Sciences (2009), doi:10.1016/j.mathsocsci.2009.10.004



ARTICLE  IN  PRESS
6 H. d’Albis, S. Ambec / Mathematical Social Sciences ( ) –

For any arbitrary coalition S, let C(S) = {Tl}Ll=1, where T1 < T2 < · · · < TL denotes the set of
connected components of S, i.e.C(S) is the coarsest partition of S such that any Tl ∈ C(S) is connected.
Since the generations between two consecutive sub-coalitions Tl−1, Tl ∈ C(S) extract up to their
optimal level x̂, given the resource stock kmax Tl left by the last generation in Tl, the resource stock
available for Tl for l = 2, . . . , L is

kncSmin Tl ≡ min

{
ρ(min Tl−max Tl−1+1)kmax Tl−1+1 −

min Tl−1∑
t=max Tl−1+1

ρ(min Tl−t)x̂t , 0

}
.

The welfare v(S) valued at date 0 that S can achieve on its own is thus:

v(S) = max
xS

∑
t∈S

γ t ft(xt),

s.t.

∣∣∣∣∣∣∣∣
kt+1 = ρ (kt − xt) ,
kt ≥ xt ≥ 0, kt ≥ 0,
kmin Tl = k

ncS
min Tl for l = 2, . . . , L,

kminS = kncSminS

(9)

In contrast to the case of consecutive coalitions, the initial resource stock constraints are defined for
each consecutive component of S. Let xSS denote the solution to (9) for any coalition S.
An important property of the value function defined in (9) is its superadditivity. Consider any

disjoint coalitions T , S ⊂ N+. Since the resource allocation (xTT , x
S
S) can be implemented by coalition

T ∪ S, we have:

v(S ∪ T ) ≥ v(S)+ v(T ).

An allocation {xt ,mt} satisfies the core lower bounds if and only if for all coalitions S ⊂ N+∑
t∈S

γ t (ft(xt)−mt + γmt+1) ≥ v(S). (10)

4. Aspiration upper bounds

Our second criterion is based on a solidarity principle inspired by Moulin (1990). In the absence
of other generations, a generation t would be endowed with ρtk0 units of the resource, which is the
‘‘natural’’ stock. It could enjoy the benefit of extracting this resource stock up to its optimal level x̂t .
Let us call this benefit valued at date 0 the generation t ’s aspiration welfare, and let it be denoted by
W (t) = γ t ft(min{ρtk0, x̂t}). Since the resource is scarce in the precise sense thatρtk0−

∑t−1
j=0 ρ

j−t x̂j <
x̂t for all t ≥ t̃ , it is impossible for every generation to be assigned its aspiration welfare.6 In Moulin
(1990)’s terms, the sustainable resource exploitation problem exhibits negative group externalities.
Since no particular generation bears any distinct responsibility for these externalities, it is only natural
to ask for every generation to accept a share of it: no generation should end up above its aspiration
welfare. This argument can be generalized to coalitions in a very natural way. The aspiration welfare
of an arbitrary coalition S is the highest welfare it could achieve in the absence of other generations.7

In contrast to the core lower bounds v(S), coalition S inherits from an untouched resource when
the aspirationwelfare is computed. Formally, coalition S has access to ρmin Sk0 > kncSmin S . For connected

6 Indeed, for any t > t̃ (where t̃ is defined above) and consecutive coalitions t ∈ S, we have
∑
t∈S w(t) > v(S), that is, the

sum of the generations’ aspiration welfare exceeds the maximal welfare from resource exploitation.
7 Similar to the case of the core lower bounds, we allow for transfers among non-contemporaneous generations in S.
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coalitions, it is the solution to the following program:

w(S) = max
xS

∑
t∈S

γ t ft(xt),

s.t.

∣∣∣∣∣∣
kt+1 = ρ (kt − xt) ,
kt ≥ xt ≥ 0, kt ≥ 0,
kmin S = ρmin Sk0.

(11)

The constraints in themaximization program are the resource dynamics, the feasibility and the initial
resource stock, respectively.
A disconnected coalition S that leaves some resource stock after the last generation in Tl to

supply the generations in Tl+1 experiences no extraction from outsiders. Therefore, the resource stock
entering Tl+1 is ρ(min Tl+1−max Tl)kmax Tl . The aspiration welfare of an arbitrary coalition S is thus:

w(S) = max
xS

∑
t∈S

γ t ft(xt),

s.t.

∣∣∣∣∣∣
kt+1 = ρ (kt − xt) ,
kt ≥ xt ≥ 0, kt ≥ 0,
kmin Tl+1 for l = 1, . . . , L− 1 and kS = ρSk0.

(12)

The constraints in themaximization program are the resource dynamics, the feasibility and the initial
resource stock conditions, respectively. Themain difference between programs (9) and (12) lies in the
initial resource stocks that are reduced by generations outside of S in (9) but not in (12).
An allocation {xt ,mt} satisfies the aspiration upper bounds if and only if for all coalitions S ⊂ N+∑

t∈S

γ t (ft(xt)−mt + γmt+1) ≤ w(S). (13)

5. A unique fair allocation

Consider the efficient resource allocation {x∗t } solution to the maximization program defined by
v(N+). Formally, {x∗t }maximizes

∑
∞

t=0 γ
t ft(xt) subject to the initial resource stock constraint k0, the

resource dynamics constraint kt+1 = ρ(kt − xt) and the feasibility constraints kt ≥ xt ≥ 0 for
t = 0, 1, 2, . . .. The concavity of ft ensures that {x∗t } is unique.
A transfer scheme {mt} defines a distribution of the welfare from intergenerational resource

extraction. We focus on the transfer scheme that leads to the downstream welfare distribution
introduced by Ambec and Sprumont (2002). Denoted by {m∗t }, it is the unique transfer scheme in
which each generation is assigned its marginal contribution to the preceding generation. Formally,
{x∗t ,m

∗
t } assigns u

∗
t = ft(x

∗
t )−m

∗
t + γm

∗

t+1 to every generation t ∈ N+ with:

γ tu∗t = v(Pt)− v(P
0t).

Proposition 1. If m∗t ≤ ft(x
∗
t ) for all t ∈ N+, {x∗t ,m

∗
t } is the unique allocation that satisfies the core lower

bounds and the aspiration upper bounds.

Proof. First, we prove that if an allocation {xt} satisfies the core lower bounds {xt} = {x∗t }. The core
lower bounds imply that:

j∑
t=0

γ t(ft(xt)−mt + γmt+1) ≥ v(Pj),

for all j ∈ N+. Since
∑j
t=0 γ

t(ft(xt)−mt + γmt+1), the above inequality for j −→∞ leads to

∞∑
t=0

γ t ft(xt)+ lim
j−→∞

γ j+1mj+1 ≥ v(N+). (14)
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Since γ < 1 then limj−→∞ γ j+1 = 0 and, since the feasibility constraint (4) upper bounds mj+1,
limj−→∞ γ j+1mj+1 = 0. Therefore, (14) implies

∞∑
t=0

γ t ft(xt) ≥ v(N+),

which, when combined with the definition of v(N+), implies that {xt} = {x∗t }.
Second, it is easy to see that if a welfare distribution {mt} satisfies both the core lower bounds

and the aspiration upper bounds, then {mt} = {m∗t }. This is due to the fact that for coalitions starting
from 0 up to any generation t , we have v(Pt) = w(Pt).8 Given m0, since v(0) = w(0), we must
have m1 = m∗1 . Let mt = m∗t for all t ≤ j + 1. The core constraints and the aspiration upper
bounds force

∑j
t=0 γ

t(ft(x∗t ) − mt + γmt+1) = v(Pj), hence γ j(fj(x∗j ) − mj + γmj+1) = v(Pj) −∑j−1
t=0 γ

t(ft(x∗t )−mt+γmt+1). Thus, bymt = m
∗
t for all t ≤ j+1, then

∑j−1
t=0 γ

t(ft(x∗t )−mt+γmt+1) =∑j−1
t=0 γ

t(ft(x∗t )−m
∗
t +γm

∗

t+1) = v(P
0j), we therefore obtain γ j(fj(x∗j )−mj+γmj+1) = v(Pj)−v(P

0j),
i.e. the desired conclusion.
Next, we show that {x∗t ,m

∗
t } satisfies the core lower bounds, that is,

∑
t∈S γ

tu∗t ≥ v(S) for any
coalition S where u∗t ≡ ft(x

∗
t )−m

∗
t + γm

∗

t+1.
Before we proceed, we note the following: for all t , we have v(P0t) + γ t ft(x̂t) ≥ v(Pt). Thus, for

all generations t ,

γ t ft(x̂t) ≥ v(Pt)− v(P0t). (15)

Suppose first of all that S is a consecutive coalition. Since PS = P0S ∪ S, by superadditivity of v,
v(PS) ≥ v(P0S)+ v(S) and

∑
t∈S γ

tu∗t = v(PS)− v(P
0S), which implies that

∑
t∈S γ

tu∗t ≥ v(S).
Second, consider any coalition S. Take the last generation in S that obtains some resource l(S) =

maxt{t ∈ S : xSt > 0}. If l(S) does not exist then v(S) = 0 ≤
∑
t∈S γ

tu∗t . Let S̄ = Pl(S)\P
0min S be the

coalition of all generations from min S to l(S). Since S̄ is connected,
∑
t∈S̄ γ

tu∗t = v(PS̄) − v(P
0S̄) ≥

v(S̄). Adding
∑
t∈S̄\S γ

tu∗t to both sides of the last inequality yields:∑
t∈S

γ tu∗t ≥ v(S̄)−
∑
t∈S̄\S

γ tu∗t . (16)

Since generations between connected coalitions in S up to l(S) extract up to their optimal level, the
allocation (xSS∩Pl(S), x̂S\S̄) can be implemented in S̄, which implies

v(S̄) ≥ v(S ∩ Pl(S))+
∑
t∈S̄\S

ft(x̂t). (17)

Since there is no more resource to be shared in S after l(S), ft(xSt ) = ft(0) = 0 for any t ∈ S \ Pl(S),
which therefore implies that v(S) = v(S ∩ Pl(S)). We combine (16) and (17) to obtain∑

t∈S

γ tu∗t ≥ v(S)+
∑
t∈S̄\S

γ t
(
ft(x̂t)− u∗t

)
.

From (15), we know that γ t ft(x̂t) ≥ γ tu∗t for all t . Hence,
∑
t∈S γ

tu∗t ≥ v(S), which shows that {m
∗
t }

satisfies the core lower bounds.
Lastly, we show that {x∗t ,m

∗
t } satisfies the aspiration upper bounds. The proof uses Lemma 1 that

is proven in the Appendix.

8 Note that the uniqueness of our solution is due to the equality of the core lower bounds and aspiration welfare upper
bounds for all consecutive coalitions starting from 0, i.e. v(Pt) = w(Pt) for all t . Notably, if we bound the size of coalitions that
might be formed to say n � +∞, other transfer schemes might satisfy the two fairness axioms. More precisely, mt can differ
fromm∗t for generations t > n.
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Lemma 1. If S ⊆ T ⊆ N and T < i, thenw(S ∪ i)− w(S) ≥ w(T ∪ i)− w(T ).

Then for any coalition S, we obtain∑
i∈S

γ tu∗i =
∑
i∈S

(w(Pi)− w(P0i)) ≤
∑
i∈S

(w(Pi ∩ S)− w(P0i ∩ S)) = w(S),

where the inequality follows from Lemma 1 and the latter equality follows from the fact that all terms,
exceptw(P max S ∩ S) = w(S) and−w(P0min S ∩ S) = w(∅) = 0, cancel out. �

6. Description of fair allocation

Let us now describe the unique allocation, denoted by {x∗t ,m
∗
t }, which satisfies the core lower

bounds and the aspiration upper bounds. To proceed, we need some additional assumptions on the
time dependency of the production function. We will notably focus on the time-invariant case such
that ft (x) = ft+1 (x), which can be interpreted as the case with no technical progress. We will then
provide some intuitions on how the fair allocation is modified when some specific technical progress
is introduced.
Proposition 1 states that the fair path of extraction {x∗t } is an efficient one. It can, therefore, be

studied independently of the fair path of transfers
{
m∗t
}
. In the specific case where ft (x) = ft+1 (x),

which implies that x̂t = x̂t+1, {x∗t } is the solution of the following problem:

max
{xt }

∞∑
t=0

γ t f (xt) ,

s.t.

∣∣∣∣∣kt+1 = ρ (kt − xt) ,xt ≥ 0, kt ≥ 0,
k0 > 0 given.

(18)

Proposition 2 characterizes the solution to problem (18).

Proposition 2. If ft (x) = f (x) for all t , the fair path of extraction {x∗t } and the stock of resource are:

(i) monotonically increasing if γ ρ > 1 with an asymptotic constant extraction path x∗
∞
= x̂ and

k∞ =
ρ

ρ−1 x̂,
(ii) monotonically decreasing if γ ρ < 1 with a stock that is asymptotically exhausted,
(iii) constant for all t if γ ρ = 1 with a constant extraction path x∗t =

(
1− 1

ρ

)
k0 for all t.

Proof. To begin, let us observe that an xt is optimal if and only if it belongs to
[
0, x̂

]
. Suppose,

by contradiction, that x̃t is optimal and is such that x̃t > x̂. Then, there exists ε > 0 such that
f
(
(1− ε) x̃t

)
> f

(
x̃t
)
and ρ (kt − (1− ε) xt) > ρ

(
kt − x̃t

)
. Hence, x̃t is not optimal.

The first order condition of problem (18) is:

f ′ (xt−1)− γ ρf ′ (xt) = 0, (19)

for all t ∈ N++, while the transversality condition is:

lim
t→+∞

γ t f ′ (xt) kt+1 = 0. (20)

Hence {x∗t } solves (19), the resource constraint and (20). Since xt ≥ xt−1 ⇔ f
′ (xt) ≤ f ′ (xt−1), we use

(19) to conclude that: x∗t ≥ x
∗

t−1 ⇔ γ ρ ≥ 1. Thus, there are three distinct cases depending on the
value of γ ρ.
Case 1: γ ρ > 1. The optimal trajectory x∗t converge to x̂. It remains to determine x

∗

0 . There are three
families of candidates that are represented in the phase diagram Fig. 1.
The first family of candidates is such that kt converges to 0. After a while, this convergence

is monotonic. With equation kt+1 = ρ (kt − xt), this implies that xt converges to 0, which is a
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Fig. 1.

Fig. 2.

contradiction. These trajectories are not optimal. The second family of candidates is such that kt
converge to+∞. These trajectories do not satisfy the transversality condition. Indeed, on the optimal
path, one has:

γ t f ′ (xt) kt+1
γ t−1f ′ (xt−1) kt

=
kt+1
ρkt
= 1−

xt
kt
,

where the first equality comes from (19) and the second from the resource constraint. Therefore,

lim
t→+∞

γ t f ′ (xt) kt+1
γ t−1f ′ (xt−1) kt

= 1 and lim
t→+∞

γ t f ′ (xt) kt+1 →+∞.

The third candidate is the saddle point solution for which kt converges to
ρ

ρ−1 x̂. This solution satisfies
the transversality condition. Along the trajectory, the resource stock is monotonically increasing.
Case 2: γ ρ < 1. Due to the condition limx→0 f ′ (x) = +∞, the optimal trajectory x∗t converges to 0. To
determine x∗0 , one should study two families of candidates that are represented in the phase diagram,
Fig. 2.
The first family of candidates is such that kt converges to 0. Among them, only one is such that x∗t

converges to 0,while the others exhibit a sequence of xt that converges to positive values,which is thus
impossible. It remains for us to check that the good trajectory satisfies the transversality condition.
On the optimal path, since kt converge to 0, one has:

γ t f ′ (xt) kt+1
γ t−1f ′ (xt−1) kt

=
kt+1
ρkt

<
1
ρ
< 1,

from which we deduce that: limt→+∞ γ t f ′ (xt) kt+1 = 0. Along this path, the stock of the resource
decreases monotonically and is asymptotically exhausted.
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The second family of candidates is such that kt converges to +∞. As in Case 1, these trajectories do
not satisfy the transversality condition.
Case 3: γ ρ = 1. In this particular case, any constant solution solves (19). Let x∗ be the optimal solution.
Given the objective: maxxt

∑
∞

t=0 γ
t f (xt), the closer x∗ is to x̂, the better. To compute x∗, we rewrite

the resources dynamics such that:

kt+1 = ρt+1
[
k0 − x∗

1− γ t+1

1− γ

]
,

and substitute this expression into (20) to obtain: limt→+∞ f ′ (x∗) ρ [k0 − x∗/ (1− γ )] = 0. The
optimal solution is thus: x∗ = (1− γ ) k0 if (1− γ ) k0 < x̂, and x∗ = x̂ otherwise. The latter solution is
eliminated on the assumption of resource scarcity. In the former, the stock of resource is constant. �

We note that these results can be immediately extended to specific technical progress. Let us
suppose for instance that: ft (xt) = At f (xt) = A0ηt f (.) with 1 ≤ η < 1/γ . The problem can now be
written as: maxxt

∑
∞

t=0 (γ η)
t f (xt) , subject to the same constraint. The problem is thus the same as

(18), apart from the fact that we now compare γ η with ρ.
Another way to introduce technical progress would be to suppose that ft (xt) = f (Atxt) with

At = A0ηt and η ≥ 1. The first order condition (19) should then be replaced by: f ′ (At−1xt−1) −
γ ρηf ′ (Atxt) = 0. Defining: x̆t = Atxt and k̆t = Atkt , the optimal solution can thus be found by
solving:{

k̆t+1 − ρη
(
k̆t − x̆t

)
= 0

f ′
(
x̆t−1

)
− γ ρηf ′

(
x̆t
)
= 0

which is the same as the one studied previously, provided that ρ is replaced by ρη.
Let us now turn to the characterization of the fair path of transfers

{
m∗t
}
. From Proposition 1, we

have:

m∗t+1 =

t∑
i=0
γ ifi

(
xPti
)
−

t∑
i=0
γ ifi

(
x∗i
)

γ t+1
, (21)

for all t ∈ N+, and where xPti is the solution to maxxi
∑t
i=0 γ

ifi (xi) subject to the resource and non-
negativity constraints. As it has been discussed above, limt→+∞ x

Pt
i = x

∗

i . Hence, by the definition
of the maximum, m∗t+1 ≥ 0. However, we have seen that fair allocation exists if and only if m

∗

t+1 ≤

ft+1
(
x∗t+1

)
for all t ∈ N+. We would like to stress that this condition is very restrictive and is not

satisfied in many cases. Indeed, fair transfers are likely to increase over time: each generation has to
compensate the previous one for not exploiting the resource in an autarkic way and also for having
compensated the previous generation. Hence, as shown in Proposition 3, fair transfers increase, at
least for an initial interval of time.

Proposition 3. Fair transfers satisfy: m∗t+2 ≥ m
∗

t+1, for all t ≤ t̃ − 2,

Proof. Using (21),m∗t+2 ≥ m
∗

t+1 if and only if:
t∑
i=0

γ i
[
fi
(
xPt+1i

)
− γ fi

(
xPti
)]
+ γ t+1ft+1

(
xPt+1t+1

)
≥ (1− γ )

t∑
i=0

γ ifi
(
x∗i
)
+ γ t+1ft+1

(
x∗t+1

)
.

We recall that t̃ relies on the scarcity of the resource and gives the date at which the resource is
depleted under autarky. Hence, for all t ≤ t̃−2, the resource is abundant and the optimal exploitation
is kept at the generations’ optimal extraction: i.e. xPt+1i = x̂i. The previous inequality can hence be
rewritten as:

(1− γ )
t∑
i=0

γ ifi
(
x̂i
)
+ γ t+1ft+1

(
x̂t+1

)
≥ (1− γ )

t∑
i=0

γ ifi
(
x∗i
)
+ γ t+1ft+1

(
x∗t+1

)
,

which, given that x̂t ≥ x∗t for all t from Proposition 2, is obviously satisfied. �
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Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Let us illustrate the existence problem driven by the increase of transfers over time by a simple
numerical application. Using Proposition 2, a specific case can indeed be easily derived. Suppose that
γ ρ = 1, and that ft (xt) =

√
xt for xt ≤ x̂, where the value of x̂ is sufficiently high (e.g. x̂ = k0).9 Thus,

xPti = (1− γ ) k0/
(
1− γ t+1

)
for all i, and:

m∗t+1 =

√
k0

(1−γ )

(√
1− γ t+1 −

(
1− γ t+1

))
γ t+1

,

which can be shown to be an increasing function of time. Moreover, since x∗i = (1− γ ) k0 for all i,
the feasibility conditionm∗t+1 ≤ ft+1

(
x∗t+1

)
is rewritten as:

√
1− γ t+1 ≤

(
1− γ t+2

)
, which is always

satisfied for low enough γ and never satisfied for large enough γ . For instance,m∗t+1 and ft+1
(
x∗t+1

)
are

plotted as (continuous) functions of time in Fig. 3 for various values of γ . The increasing dashed blue
curve representsm∗t+1 while the solid red line is the constant ft+1

(
x∗t+1

)
. We see that the condition is

satisfied for γ = 0.3 and γ = 0.5, while it is not for γ = 0.7. To interpret this, let us recall that a
larger γ implies (in this very specific case) a lower resource regeneration rate. It is worth mentioning
that for γ = 0.7, the feasibility condition is violated ‘‘from the beginning’’, that is, for the first transfer
m1 between the first two generations 1 and 2. More precisely, along the efficient extraction path, the
second generation has not enough production to transfer to the first generation to make it as well
off as it would be under autarky. Indeed, in this example, it is impossible to find a compensation
scheme that satisfies the core lower bounds for coalitions composed by two successive generations

9 More precisely, we need x̂t > x∗i = (1− γ ) k0 .
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only. Therefore, relaxing the core lower bounds by allowing coalitions of limited size to form does not
guarantee existence.
To conclude this characterization of fair allocation, let us discuss the dynamics of the utilities of

each generation u∗t . Proposition 4 gives a sufficient condition under which the utilities decrease over
time.

Proposition 4. For all t ≥ 2, u∗t ≤ u
∗

1 if ft
(
xPtt
)
≤ f1

(
x̂1
)
.

Proof. The Proof of Proposition 1 implies that u∗1 = f1
(
x̂1
)
. As a consequence, u∗t ≤ u

∗

1 ⇔ γm∗t+1 −
mt ≤ f1

(
x̂1
)
− ft

(
x∗t
)
, which using (21) implies that u∗t ≤ u

∗

1 if and only if:

t−1∑
i=0

γ ifi
(
xPti
)
−

t−1∑
i=0

γ ifi
(
xPt−1i

)
≤ γ t

[
f1
(
x̂1
)
− ft

(
xPtt
)]
.

Using the definition of a maximum, we observe that the left-hand side of the inequality is negative,
which is sufficient for us to conclude. �

A direct implication of this is that technical progress is a necessary condition for fair allocation
to keep the utilities at least constant. Indeed, if ft (x) = ft+1 (x), then the maximal production level
decided by the first generation cannot be overcome.

7. Conclusion

In this article, we proposed a fair allocation of a scarce resource over an infinite sequence of
overlapping generations. When it satisfies two fairness criteria, namely the core lower bounds and
the aspiration upper bounds, the allocation is unique. The exploitation of the resource is efficient and
there is no generation left without any resource. First generations are compensated through a transfer
scheme in which each generation is assigned its marginal contribution to the preceding generation.
Such a scheme is likely to induce an increase in transfers over time that may cause the infeasibility
of the allocation. Finally, technical progress is necessary for avoiding the decrease of the utilities of
future generations. One remaining issue is the stability of the fair allocation, which is related to our
last result. If utilities decrease over time while the resource stock increases, future generations have
an incentive to deviate. This important question has been left for future research.
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Appendix. Proof of Lemma 1

This proof is adapted from Ambec and Ehlers (2008). Let ySS denote the solution of the program
defined byw(S) in (12) for any arbitrary coalition S ⊂ N+. As a first step in the proof of this lemma, let
us show that if ∅ 6= S ⊂ T ⊂ N, then ySS ≥ y

T
S . Clearly, it suffices to establish that y

S
S ≥ y

S∪t
S whenever

∅ 6= S 6= N and t ∈ N \ S. Let us write ySS = xS and y
S∪t
S = yS . All agents under consideration in the

argument belong to S. From the definition of x and y,
∑
i∈S yi ≤

∑
i∈S xi. Let i1 ≤ · · · ≤ iL be those

i such that xi 6= yi (if none exists, there is nothing to prove). We claim that yi1 < xi1 . Suppose, by
contradiction, that the opposite (necessarily strict) inequality is true. Let j be the smallest successor of
i1 such that yj < xj (which necessarily exists). Moreover, yj < x̂j since xj ≤ x̂j. We define yεi1 = yi1 − ε,
yεj = yj + ρ

j−i1ε, yεi = yi for i 6= i1, j. Since f
′

j (yj) > f
′

j (xj) and f
′

i1
(xi1) > f

′

i1
(yi1), choosing ε > 0 that
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is small enough (in particular, such that yj + ρ j−i1ε < x̂j) ensures that
∑
i∈S γ

ifi(yεi ) >
∑
i∈S γ

ifi(yi)
while yεS meets the same constraints as yS , which is a contradiction. Since yi1 − xi1 < 0, it now follows
that yil − xil < 0 successively for l = 2, . . . , L.
Moving on to the second step, let S ⊂ T ⊂ N and T < i. We define x′i = y

T∪i
i and x′j = y

T∪i
j +y

S
j −y

T
j

for j ∈ S. From our first step, yT∪ij ≤ y
T
j ≤ y

S
j for all j ∈ S. Therefore, 0 ≤ y

T∪i
j ≤ x

′

j ≤ y
S
j for all j ∈ S and

the consumption plan x′ for S∪ i satisfies the same constraints as yS∪iS∪i. Hence,w(S∪i) ≥
∑
j∈S∪i γ

jfj(x′j)
and

w(S ∪ i)− w(S) ≥ γ ifi(x′i)+
∑
j∈S

γ j[fj(x′j)− fj(y
S
j )]. (22)

On the other hand, since yT∪ij ≤ y
T
j for all j ∈ T \ S,

w(T ∪ i)− w(T ) ≤ γ ifi(x′i)+
∑
j∈S

γ j[fj(yT∪ij )− fj(yTj )]. (23)

Since x′j− y
S
j = y

T∪i
j − y

T
j and y

T∪i
j ≤ x

′

j for all j ∈ S, it follows from (22), (23), and the concavity on the
rising portion of fj thatw(T∪ i)−w(T ) ≤ w(S∪ i)−w(S). This completes the proof of the lemma. �
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